
Disk Encryption Analyzer
A tool for the idenfication of encrypted containers in a live system

or an evidence file.

Software Project – CSE2000

Delft University of Technology

Authors: Group 16-D
Kaan Altinay, Mihnea Bernevig, Yigit Colakoglu,

Matej Tomasek, Konstantin-Asen Yordanov
Client: Rotterdam Police

TU Coach: Thomas Durieux, TA: Ruben Backx
Project Coordinators: Martin Skrodzki, Thomas Overklift, Otto

Visser, Huijuan Wang

June 2023

Preface

This report was written by a group of five BSc Computer Science students at the
Delft University of Technology. In the last quarter of our second year, we applied
for a project offered by Team Bestrijding Kinderporno en Kindersekstoerisme
of the Rotterdam Police involving identifying encrypted containers in evidence
files and live systems.

While writing this report, we assumed the reader has a basic understanding of
software development and is knowledgeable of digital forensics and Windows-
supported file systems on disk drives. A list of abbreviations was added for
further clarity of the terms used, together with footnotes for external references
and more detailed explanations of concepts.

Readers with experience in software development who will maintain the tool
in the future would find Chapter 3 and Chapter 4 the most relevant. For readers
interested in the problem’s scope and its ethical implications, such information
can be found in Chapter 2 and Chapter 6.

We would like to thank our clients Jan-Willem van Lottum, Mark van Ochten,
and Leo Kerkhof for their continued support and oversight, as well as our coach
Thomas Durieux for his supervision and advice for Python development. We are
also very thankful to the hardworking authors of Digital Forensics Virtual File
System, a Python package widely used in our application, and its back-ends.

Delft, 25th of June 2023
Kaan, Mihnea, Yigit, Matej, and Konstantin-Asen

I

Summary

In the field of forensic investigation, identifying artifacts of encryption software
is a common task carried out by analysts whose main objective is to find evidence
of criminal activity. While encryption may be used solely for security purposes
with no ill intentions, it also presents an opportunity to hide such incriminating
files for people involved with blackmail, data theft, or organized crime. In the
scope of this project, images and footage of child pornography are often similarly
hidden in encrypted containers, in many cases being stockpiled by hoarders and
distributors on their personal devices.

Given the sensitive nature of the data, investigators need to reliably detect
these volumes and quickly find the perpetrators responsible. However, analyzing
an entire drive or disk image is not always computationally feasible. The main
problems arise from the variety of commercially-available cryptographic software
as well as the typically large size of the drives under-inspection. Most tools used
by forensic analysts can in practice only handle certain file types, and they fail
to efficiently traverse the targeted filesystem, which costs valuable time during
investigation and produces inconclusive results.

The main objective of this report is to elaborate on our group’s approach and
design choices throughout the development of the Disk Encryption Analyzer
(DEA) tool. Team Bestrijding Kinderporno en Kindersekstoerisme (TBKK) of
the Rotterdam Police requested a maintainable software application that offers
high performance for live inspections at a suspect’s home and provides greater
accuracy when run on evidence files at the police station. The tool’s codebase
should also be structured in an extensible way, allowing developers to easily add
support for new analysis methods and other file formats in the future.

To improve the accuracy of flagging suspicious containers, we implemented
three analysis methods checking file headers and extensions (signature analysis),
common Windows directories and registry entries (artifacts analysis), as well as
the randomness of a file’s raw byte-data (statistical analysis). They interleave in
a way that continuously reduces the search space, adhering to the performance
requirement for the tool. We provided support for filesystems recognized by the
Windows operating system and incorporated multiprocessing to parallelize the
detection of encryption-related artifacts. To test our functionality, we performed
unit testing, mocking, and system testing with virtual machines, achieving line
coverage of over 75%. We also wrote code documentation for individual classes
and methods, as well as an installation, a developer, and a user guide.

In conclusion,DEA offers an efficient solution for detecting encrypted containers
in both live systems and forensic evidence files. The extensible class structure
would allow future developers of the tool to add more analysis techniques that
reduce the number of flagged false positives. Support for the macOS and Linux
operating systems could also be added, so that DEA is applicable in even more
circumstances. Additionally, translating the tool’s documentation as well as the
error-handling messages into Dutch would make DEA available to investigators
who do not speak English, further improving transparency and explainability.

II

List of Abbreviations

DEA Disk Encryption Analyzer

TUD Delft University of Technology

TBKK Team Bestrijding Kinderporno en Kindersekstoerisme

IDE Integrated Development Environment

CLI Command Line Interface

GUI Graphical User Interface

MBR Master Boot Record

VHD Virtual Hard Disk

DTO Data Transfer Object

GDPR General Data Protection Regulation

LED Law Enforcement Directive

NSRL National Software Reference Library

III

Contents

Preface I

Summary II

List of Abbreviations III

1 Introduction 1

2 Establishing the Task’s Scope 3
2.1 The Need for Encryption Identification 3
2.2 Stakeholders Involved . 3
2.3 Use Cases . 4
2.4 Survey of Existing Tools . 5
2.5 Consulted Experts . 6

3 Project Approach 7
3.1 Settling on the Pipe-and-Filter Architecture 7
3.2 Supporting Design Patterns . 8
3.3 Outlining the Analysis Workflow 11

4 Implementation Details 13
4.1 Design of the User Interface . 13
4.2 Engine . 15
4.3 Analyzer Graph . 16

5 Development Methodology 18
5.1 Our Approach to Development 18
5.2 Code Quality, Testing, and Style 19
5.3 Reflection on Our Testing Strategy 20
5.4 Documentation . 21
5.5 Requirements . 21

6 Ethical Considerations – From Development to Deployment 26
6.1 Privacy and Transparency as Conflicting Priorities 26
6.2 Consequences of Inaccurate Analysis 27
6.3 Additional Risks and Their Implications 27

7 Recommendations 29

8 Conclusions 30

A Work Distribution among Team Members 32

B Project Timeline 33

IV

1 Introduction

Detecting encrypted containers in physical and virtual drives remains a difficult
task in the field of forensic investigation. One challenge comes from the variety of
encryption software that is currently available, like BitLocker1 and VeraCrypt2.
The large number of disk-image formats exacerbates this issue as tools used by
forensic analysts can in practice only specialize in a set amount of file types
(common ones include E01, L01, DD, and AD1). Consequently, they generalize
poorly to other forms of encryption and fail to offer a universal solution. Another
problem arises from the size of a given drive or disk image. Because it can vary
from 50 GB to more than 14 TB, the complete analysis of a targeted system is
often computationally infeasible. Such large search spaces cannot be traversed
efficiently during inspection [1].

Both problems are important to consider since forensic investigators need to
reliably detect and process encrypted files regardless of what software produced
them. People engaging in immoral or criminal behavior often hide the evidence
in such volumes, precisely to avoid police intervention. Consequently, forensic
analysts regularly perform on-site inspections at a suspect’s home – in such
scenarios, the speed of analysis becomes the greatest priority, which in turn
relates to the problem of computational infeasibility. For these reasons, Team
Bestrijding Kinderporno en Kindersekstoerisme (TBKK) and Team Zeden of the
Rotterdam Police asked us to develop a software tool that identifies encrypted
containers in both live systems and already-collected evidence files, offering high
performance during analysis yet also remaining maintainable as the technological
stack changes in the future.

The objective of this report is to provide justification for the design choices our
group made while developing the Disk Encryption Analyzer (DEA) tool, our
proposed solution that identifies encrypted containers in a system. A literature
study was performed in connection with detecting the outputs of cryptographic
algorithms and the installations of commercially-available encryption tools. In
order to extract the requirements for the product’s operation, interviews were
conducted with the clients – two of Team TBKK’s forensic investigators. The
desired functionality was then prioritized according to the MoSCoW model,
placing a larger emphasis on the critical features with reference to the time
available for development. Throughout the design process, we strove to make
DEA both extensible and efficient. To achieve the former, we used abstractions
for disks, filesystems, and analysis techniques, providing a universal standard
for each of the tool’s components. In order to satisfy the speed requirements
without neglecting the tool’s accuracy, we implemented two operation modes
(live and complete), leaving the choice of which version to run to the operator
conducting the investigation – either in the field or at the police station.

1Overview of Windows BitLocker: https://learn.microsoft.com/en-us/windows/

security/operating-system-security/data-protection/bitlocker/
2VeraCrypt: https://veracrypt.fr/en/Home.html

1

https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/
https://learn.microsoft.com/en-us/windows/security/operating-system-security/data-protection/bitlocker/
https://veracrypt.fr/en/Home.html

The report will be presented in the following structure. Chapter 2 will provide
background information and outline the stakeholders involved. Chapter 3 will
demonstrate the team’s major architectural and design decisions, as well as
the different analysis methods that were implemented. Chapter 4 will then
elaborate on the concrete implementation of DEA and discuss the critical parts
of the application. Afterwards, Chapter 5 will outline our group’s development
methodology, the code quality and testing frameworks we used, as well as the
list of requirements for the tool’s operation, prioritizing some as necessary for
the minimum-viable product over any extra functionality. Finally, Chapter 6
will address some of the ethical implications of DEA’s future use in forensic
investigation, followed by our team’s conclusions and recommendations for the
tool’s maintenance.

2

2 Establishing the Task’s Scope

Elaborating on the intricacies of the issue at hand, this chapter focuses on a
comprehensive evaluation of the identified problem, the stakeholders involved,
the applicable use cases. It provides an overview of the currently-available
products and the expertise incorporated throughout the development process.
With this chapter of the report, we aim to deliver a robust understanding of the
problem, crucial for grasping the rationale behind our design choices.

Section 2.1 discusses the difficulties forensic investigators face when searching
for cryptographic output, further justifying the need for DEA. Afterwards,
Section 2.2 outlines the relevant stakeholders, and Section 2.3 elaborates on
the potential use cases for the product our group developed. Section 2.4 then
provides information on already-existing tools for encryption detection, their
benefits and drawbacks. Lastly, Section 2.5 lists the areas in which the two
experts we consulted, Jan-Willem van Lottum and Mark van Ochten, assisted
us throughout the project.

2.1 The Need for Encryption Identification

Detecting encryption presents a significant challenge. Suspects often conceal
illegal files in encrypted containers, making detection and access difficult for
investigators. While we can access these containers through various means, these
containers are usually hidden deep within the filesystem. This makes it more
costly and harder to detect their presence and location, leading to investigators
missing valuable evidence.

One difficulty in identifying encrypted containers arises from the wide variety
of cryptographic software and disk-image formats which are prevalent today.
Forensic analysts’ tools are specialized, which limits their ability to recognize
and support all encryption methods and file types.

Another problem are the immense (and often infeasible) time requirements
of analyzing drives of large sizes (usually, Terabytes-worth of data), which
are particularly difficult to meet during on-site inspections, where the time
window is short, and speed is paramount. Therefore, as encryption of illegal
files becomes more prevalent in crime, a tool that could perform encryption
detection in a fast and thorough manner is crucial.

To mitigate these challenges, forensic investigation teams Zeden and TBKK
seek a high-performance software tool. This product should be competent in
recognizing encrypted containers within live systems and pre-collected evidence
files, and also offer an adaptable structure, facilitating the smooth integration
of new elements.

2.2 Stakeholders Involved

This product’s success hinges on addressing the needs and expectations of
various stakeholders, each bringing a unique perspective to the functionality,
usability, and effectiveness of the proposed tool. From forensic analysts striving

3

for accuracy to suspects concerned about the integrity of their devices, the
stakeholders involved and their roles and requirements are outlined as follows:

Forensic Analyst The forensic analyst, working with evidence files in an office
environment, should be able to use the tool to analyze such files and check
whether they contain encrypted containers. For this stakeholder, accuracy
and thoroughness are more important than speed.

Field Officer The field officer would usually rely on the tool to quickly analyze
a running machine for potentially encrypted files, as well as any suspicious
artifacts which would indicate whether an encryption tool was used in the
system under-inspection.

Developer The developer is going to maintain the tool we create and add new
evidence file types, artifacts, and filesystems as the scope of the tool widens
due to the needs of the customer. The process of adding new functionality,
especially support for new evidence files and filesystems, should therefore
require minimal interaction with the previously written code, adhering to
the open-closed3 principle for extensibility.

Decision-Maker The tool’s output is going to be used by decision-makers in
law enforcement, and possibly in judicial environments. This means that
it should be concise and readable to be processed in a quick manner by this
stakeholder. Moreover, the tool should make it clear why it has deemed
an artifact as suspicious to allow this stakeholder to justify their decision.

Suspect The main priority for the suspect is that their device is not damaged
and their stored files remain untouched in the event that they are innocent.
To that end, the analysis tool should not alter the files it interacts with
while running. The findings report generated by the tool ought to contain
the paths to the likely-encrypted together with the benign files from the
system under-inspection. Flagged files will then be provided as input to
cracking software used by forensic analysts, their contents being revealed.
While decryption is not part of the DEA pipeline, the presence of both
benign and suspicious file paths in the tool’s output would provide more
justification for the decision-making that ultimately affects the suspect.

2.3 Use Cases

The analysis performed by the DEA tool has two major applications that would
benefit Team TBKK and Team Zeden during forensic investigation:

• A suspect’s system needs to be inspected on-the-spot during a live police
operation: the drive(s) are scanned for the presence or traces of encryption
tools (artifact analysis), and the files are divided into likely encrypted vs.

3The Open-Closed Principle states that software entities (classes, modules, functions)
should be open for extension but closed for modification, allowing for new behavior to be
added without altering existing code.

4

benign based on the header information and file types (signature analysis).
The tool is run on the target system from an external thumb drive. The
finding report is created and stored on the thumb drive, in order to avoid
leaving unnecessary traces on the suspect’s machine.

• Collected evidence files now need to be analyzed at the police station using
the larger amount of computational resources available there: in addition
to the artifact and signature analysis, statistical checks are carried out to
show the presence of pseudorandom4 data (highly indicative of encryption)
and achieve a greater detection accuracy with fewer false positives.

2.4 Survey of Existing Tools

There are several tools in the industry that are able to detect encrypted volumes,
files, and search for the artifacts of an encryption tool in a filesystem. Analyzing
these existing tools in the search for an already-applicable solution to this issue
gave us some relevant insight into the functionality our tool should provide.

2.4.1 MAGNET Encrypted Disk Detector (EDD)

The tool’s official description from the MAGNET forensics website [2] states:

Encrypted Disk Detector checks the local physical drives on a system
for TrueCrypt, PGP, VeraCrypt, Check Point processes, SafeBoot,
or Bitlocker encrypted volumes. If no disk encryption signatures are
found in the MBR (Master Boot Record), EDD also displays the
OEM ID and, where applicable, the Volume Label for partitions on
that drive, checking for Bitlocker volumes.

The primary purpose of the MAGNET forensics tool is to assist analysts in
identifying encrypted disks on a live system, providing valuable information to
support decision-making processes. However, it is important to note that EDD
does not detect encrypted partitions within evidence files, nor does it scan the
filesystem for encrypted containers or encryption artifacts.

2.4.2 Autopsy Encryption Detection Module

This5 commonly-used forensics analysis platform comes bundled with a module
for detecting encrypted containers in evidence files. It mainly relies on statistical
analysis methods like entropy calculation, and filters based on file sizes. It lacks
support for analyzing a whole disk dump for encrypted partitions and detecting
artifacts of encryption tools in a system.

4A sequence that appears to be random, but was generated by a deterministic process.
5For more information, https://sleuthkit.org/autopsy/docs/user-docs/4.19.3/

encryption_page.html

5

https://sleuthkit.org/autopsy/docs/user-docs/4.19.3/encryption_page.html
https://sleuthkit.org/autopsy/docs/user-docs/4.19.3/encryption_page.html

2.4.3 Survey Conclusion – Insight Gained

After analyzing the available tools, we have concluded there are various solutions
to detecting encrypted containers on live systems and evidence files, with the
caveat, however, that none of them provide a comprehensive package that can
perform the complete analysis our client is looking for. Although the tools we
have discovered are not enough to outright solve the problem we were presented
with, some valuable insight was gained from the analysis. The user interface of
the Autopsy Encryption Detection Module, both when configuring the settings
of the application and when viewing the output, provided us with inspiration
for the design of our own tool’s GUI. As for MAGNET forensics’ solution, the
non-intrusiveness and ease-of-use of the tool gave us a standard to strive for.

2.5 Consulted Experts

The product owners we are developing the DEA tool for are Mark van Ochten
and Jan-Willem van Lottum, both of whom are forensic investigators for Team
TBKK of the Rotterdam Police. We discussed the functionality requirements
with them early on in the project timeline, and they remained the main point of
contact regarding any modifications to the product throughout the quarter. We
also consistently held weekly Monday meetings to report our team’s development
progress and ask for clarifications as needed.

They also provided us with forensic tools used in-practice (FTK6, EnCase7,
and TrueCrypt8) and demonstrated how they operate, allowing us to create and
inspect our own encrypted containers for testing purposes. In this manner, we
also had the opportunity to direct any questions related to these tools and the
way they handle evidence files to our product owners.

For technical questions regarding the files our tool processes, the future use
of the tool after deployment, and the most suitable formats of the findings report
that should be generated, we regularly contacted Jan-Willem and Mark. Since
they are experts in the field of forensic analysis, they immensely facilitated the
development process by providing relevant and swift answers.

6FTK Imager: https://www.exterro.com/ftk-imager
7OpenText EnCase Forensics: https://www.opentext.com/products/encase-forensic
8Discontinued, superseded by VeraCrypt

6

https://www.exterro.com/ftk-imager
https://www.opentext.com/products/encase-forensic

3 Project Approach

This chapter of the report expands upon our team’s design choices, providing a
discussion of our reasoning and a high-level overview of the product’s internal
structure. Section 3.1 presents an analysis of the architectures we considered for
the tool and then describes how the pipe-and-filter architecture we ultimately
chose. Section 3.2 explains supporting design patterns through the use of UML
diagrams. Finally, Section 3.3 demonstrates the analysis workflow, describing
the functioning of the tool step-by-step.

3.1 Settling on the Pipe-and-Filter Architecture

In preparation for the development process, we carefully assess the different
software architecture options. A right choice of an architectural pattern would
greatly simplify our development process since it provides a general solution to
commonly-occurring problems, which have relevance in our case. Additionally,
it serves as a set of guidelines we adhere to when extending our code structure.
The most important observations about architectural patterns are the trade-offs
involved with their implementation. Choosing a non-fitting one would lead to
wasted effort and lost time spent on an inefficient code base. We have considered
the following architectural patterns:

Layered Architecture was our first choice of architecture due to the manner
in which the items the tool should be able to analyze stack up into a
layered hierarchy. If we choose this architecture, then the disks would be
on the bottom layer, files on the top, with file systems staying in-between
those two. Each layer would contain methods to analyze the artifacts that
belong to that layer, and the resulting artifacts would be passed on only
to the layer that is one above the current one. This would provide us with
a convenient categorization of our artifacts. Because of this, the layered
architecture was the one that we initially considered using. However, it
proved to be too constricting of how the analysis methods interact with
each other and how artifacts are passed between the internal components.

Monolithic Architecture was considered as the application would become a
self-contained unit where its components rely on coupling and complement
their functionality. For a project of our scope, opting for this pattern
was partially fitting, considering how the analyzable items interact with
the different analysis techniques. However, it provides no solution for
streamlining the workflow in an efficient and extensible manner that at
the same time remains explainable and is unlikely to become obfuscated.

Pipe-and-Filter Architecture being a viable choice was not immediately
obvious to us. After we established the components’ structure, we looked
into the speed requirement of our application. Maintaining a queue (or
pipe) of items on which each analyzer acts as a filter, possibly generating

7

more items and adding them to the queue, seemed the most viable to us.
Using multiple processes, we could then further boost the performance.

Following our analysis of potential architectures, we came to the conclusion
that the pipe-and-filter architecture is the most appropriate for our application.
First, it complements the modularity requirement we had from the beginning of
the project. Adhering to this architecture, we could achieve a structure where
the artifacts generated would simply be piped into their corresponding analysis
methods, and the work done by analyzers could be decreased by adding filter
components. Moreover, different components could be chained together without
having to modify the existing ones, allowing future developers to add features
while adhering to the open-closed principle.

3.2 Supporting Design Patterns

Due to the extensibility requirements of the application, the selection of design
patterns played a crucial role in the tool’s development. Furthermore, because
of the limited time span allocated for development (6–7 weeks), choosing design
patterns that would meet the modularity requirements of the tool was of high
importance since starting off with a wrong set of design patterns in-mind would
have cost-valuable development time. Therefore, the final product would ideally
facilitate adding new functionality withminimal modifications to the existing
codebase and maintain a class structure with low cohesion, separating classes
whose behavior is unrelated into different modules, exposing only some methods
to other parts of the application, and keeping the rest private.

3.2.1 Strategy

Given the modularity requirements of theDEA tool, it was crucial to design it in
a manner that facilitates adding support for other evidence file types and new file
systems. Even though the tool will initially operate only on live systems and
evidence files, adding other operation media should also be easy to make the
tool future-proof. Therefore, obeying the open-closed principle while developing
the tool was of utmost importance, both for extensibility and code reuse.

Another part of the tool that requires a high level of extensibility is the
analysis techniques that are being applied. Therefore, one of our main priorities
was to give the possibility of adding new analysis methods in the future as
further research into cryptography is conducted, new encryption algorithms are
discovered, or other encrypted containers become widely used.

Using a strategy design pattern9 for the parts of the DEA tool that requires
high modularity (i.e. should remain loosely coupled, interacting only through an
interface of exposed functionality) goes hand-in-hand with our need to achieve

9The strategy design pattern allows for interchangeable algorithms to be encapsulated
and used dynamically within an object, enabling flexibility and runtime selection of different
behaviors.

8

flexibility in the data types being worked with. By abstracting away the lower-
level details of accessing an evidence file and reading a filesystem, the strategy
pattern allowed us to focus on the analysis instead. A simplified UML diagram
describing how this pattern was implemented can be found in Figure 1.

Figure 1: UML Diagram of the DiskAnalyzer and FileSystemView Strategies

The strategy pattern was also applicable when we implemented the analysis
techniques for flagged file paths. Despite their differing internal operation, these
methods can be categorized based on the common type of input they expect
and the identical result-objects they produce. Taking advantage of this, the
strategy pattern allows the core system to run different analysis techniques to

9

abstract away from implementation details. As long as the standardized class
and method signatures for the analysis modules are maintained, users will only
need to provide the correct input type to obtain a result. This design facilitates
extensibility as a developer can add another analysis method by simply creating
a new strategy class without having to interact with any other part of the tool.
An example of how this was implemented is shown in Figure 2.

Figure 2: Class Diagram of the Analysis Strategies per Stage

3.2.2 Data Transfer Object (DTO)

Because of the fact that all analysis methods have similar outputs and all of the
aggregated results will eventually be serialized into a file, it is helpful to use a
common DTO for all analysis strategies to use as their output. This final DTO
would consist of all the relevant information that should be reported to the user
once the analysis has ended. These data would be a list of containers flagged as
encrypted that should be passed through cracking software, a list of benign files
that can undergo basic contents analysis, and optionally an instance of a Chart
object that stores information on how to visualize the DTO when serializing to
a visual format like HTML, so that the graph is included in the findings report.

3.2.3 Factory Method

Because we support several reporting techniques in the tool, we needed a way to
serialize the output DTOs into another format. Moreover, with customizability
being another major focus of the tool, it is necessary to allow the user to modify
the data which is serialized. This, of course, necessitates that the user is able to
modify the serializer instance that the tool uses – in such a scenario, a factory
method10 design pattern is applicable. Having a serializer factory be maintained
for each output-format, a serializer of the corresponding type could quickly be
created whenever a findings report is to be generated, regardless of the concrete
analysis stage. Several formats are supported for the findings report generated

10The factory method design pattern is a creational pattern that provides an interface for
creating objects, but allows subclasses to decide which class to instantiate.

10

by the tool, including JSON, HTML, TSV, and TXT. A UML diagram outlining
the factory method pattern is shown in Figure 3.

Figure 3: UML Diagram Representing the FindingsReport Factory

3.3 Outlining the Analysis Workflow

The analysis performed by the DEA tool constitutes a sequence of checks, each
narrowing down the search space occupied by encrypted containers that need
to be inspected while also improving the accuracy of the flagging carried out by
the tool. Hence, checks that are costly in terms of their time requirements (like
the statistical ones) will be run on a maximally-reduced search space for the
purpose of reducing the number of false positives in the tool’s output.

First, the tool reads the partition table of the provided forensic image in
order to view the partitions’ locations and sizes, as well as to check whether there
is disk space that is unpartitioned and should therefore be inspected further.
Having access to the partitions and their corresponding filesystems, the tool then
performs signature analysis, checking for mismatches between a file’s header
and its explicit extension. During this step, files smaller than 50 Megabytes can
be omitted and immediately labeled as benign since the output of any available
encryption tool would be too large to fit within that size.

In parallel to that, the tool searches the filesystem under-inspection for file
types and keywords usually indicative of encryption tools (such as BitLocker,
TrueCrypt, and VeraCrypt). It also parses the registry files and event logs that
it encounters for any references to the former and traces of their use, typically
in the form of root keys or file names (artifact analysis) [3].

11

The most accurate yet time-consuming step are the statistical checks that
allow for the detection of pseudorandom data – another indicator of encryption.
For our tool, we implemented four such algorithms (Entropy, Chi-Square Test,
Frequency Test, Monte Carlo for Pi), all of which provide an expected threshold
for encrypted data the tool’s results can be compared against [4].

The generated findings report contains a list of benign files and a collection
of likely-encrypted containers flagged by the signature and statistical analysis
steps. It also shows whether flags were raised for the presence of unpartitioned
space, encryption tools, or virtual machines from artifact analysis.

12

4 Implementation Details

Expanding on the architectural choices from the previous chapter, this chapter
of the report elaborates on the concrete implementation of our product and the
way we decided to structure its internals. The different sections explore certain
algorithms and techniques we have used that play a central role in DEA’s
operation. First, Section 4.1 expands upon the user interface for the application.
Afterwards, Section 4.2 discusses the functionality of the engine, the benefits of
multiprocessing, and the use of lazy-loading. Lastly, Section 4.3 demonstrates
the analyzer graph, outlining the interactions between the analysis techniques.

4.1 Design of the User Interface

The user interface has three main features: extensibility, portability and variety.
It allows the addition of new parameters to analysis techniques without having
to edit the existing code. Moreover, it provides the ability to transport a certain
configuration so that search results can be reproduced. Finally, it supports usage
through multiple media, namely a command line interface (CLI) and a graphical
user interface (GUI).

First, in order to allow the addition of analysis techniques that require
arguments, we implemented a custom method where techniques specify what
arguments they need. This information is then used by the tool to configure the
user interface dynamically so that the user can customize the internal state of
any analysis method.

The requirements analysis period has shown us that the GUI and the CLI
are both equally valuable to the client when they are using DEA. The GUI
is crucial when operating in the field while the CLI is very important for the
integration of the tool to the analysis pipeline of the client. Because of this, we
have integrated both features into the tool and made it so that the CLI and the
GUI are each other’s complement. Thus, any operation that can be executed on
the GUI can also be done by running an equivalent command in the terminal.

Finally, because of the portability requirement, the tool had to provide the
option to import and export a scan’s configuration so that it can be reused in
the field or in the forensics lab. Because of this, we have integrated the ability
to pass a configuration file to the tool when running it, which is parsed by the
same central argument parser, and thus allows users to export and import any
possible configuration that DEA supports.

13

Figure 4: Screenshot from the analysis GUI

Figure 5: Screenshot from the analyzer settings GUI

14

4.2 Engine

The engine is a component of DEA that is designated to handle the management
of the analysis process, keep track of the artifacts that have been queued up for
analysis, and spawn the worker processes. To implement all this, it makes use of
several techniques, namely multithreading, multiprocessing, and lazy-loading.

4.2.1 Multiprocessing and Multithreading

The engine makes use of multiprocessing to spawn up to n processes, specified
by the user when it is first initialized. It spawns subprocesses instead of threads
in order to ensure that the concurrency is not impacted by the Python GIL.
The GIL is the Python Global Interpreter Lock, it is a lock within the Python
interpreter used to ensure that only one thread is able to run using the interpreter
instance. When creating the subprocesses, it provides them with a latch, a
counter, and a queue which it uses to manage the processes.

When a worker is started up, it enters the cycle of polling the queue for
artifacts and analyzing them. Once it retrieves an artifact, it increments the
shared worker counter and analyzes the artifact. Once it is done analyzing,
it decrements the counter and iterates over the loop one more time. It keeps
looping until one of the following three conditions are met: the latch has been
set, the queue is empty and there are no other workers running analyzing an
artifact, or an error has been encountered. The pseudocode for the worker’s
analysis loop is provided in Algorithm 1:

Algorithm 1 Pseudocode for a worker process’ main loop

1: latch← False
2: worker count← 0
3: while ¬latch do
4: artifact← queue.pop()
5: if artifact = None then
6: break
7: end if
8: worker count← worker count+ 1
9: load(artifact)

10: analyze(artifact)
11: worker count← worker count− 1
12: break
13: worker count← worker count− 1
14: if worker count = 0 ∧ queue.isEmpty() then
15: break
16: end if
17: end while
18: queue.push(None)
19: latch← True

15

The engine also starts up 3 watchdog threads, which are run under the same
main engine thread and share its GIL. These threads are responsible for handling
I/O operations such as waiting for a graceful exit input if we are running in the
CLI, saving the report every n minutes to ensure minimal data-loss in case of
failure, and finally notifying the user of the current status of the queue so that
the operator can get a general idea on the tool’s process.

4.2.2 Lazy-Loading

When the engine is started up, it initializes the data structures necessary for
DEA’s operation and initializes proxies for each of them, which are then handed
over to every worker process that is spawned. These proxies allow GILs running
in different processes to communicate with the main process where the engine
is running. When communicating with these proxies, the workers need to
serialize/deserialize objects using Pickle11.

The use of proxies for communication comes with the benefit of achieving
true multiprocessing, which is very important for the performance of the tool.
However, it introduces the complication that not every object is serializable
using Pickle. This is especially valid in DEA’s case, as it interacts with file
objects. Because of this, we have chosen to make every artifact object that
DEA analyzes lazily-loaded. This allows every artifact to initially be treated
simply as metadata on what needs to be analyzed. Once they are loaded,
artifacts allow access to the actual data they contain.

The lazy-loading of artifacts also comes with the extra benefit of caching.
If the objects were not lazily loaded, the only option would be to implement a
central cache data structure in the main engine thread, but this cache’s benefits
would be severely hindered by the inter-process communication required. By
lazily loading the objects in workers, however, the workers are able to maintain
their own local cache which they use when loading objects. This is especially
beneficial when analyzing large evidence files since they require caching to be
analyzed efficiently.

4.3 Analyzer Graph

The entire analysis process heavily relies on all sequences, or paths, of analyzers
that the disk under inspection takes. Passing through the chain, the disk is split
by the analyzers into smaller analyzable artifacts, which are then processed by
their corresponding analyzers along the path. This arrangement of consecutive
analyzers creates a directed graph, where the nodes are the analyzers. Such a
graph is shown in Figure 6.

11Pickle is a standard python library which is used to serialize and deserialize objects.
https://docs.python.org/3/library/pickle.html

16

Figure 6: A graph of analyzers

To enforce such an ordering, every analyzer has to provide its input type
and all possible output types of artifacts, such that it is possible for us to match
different analyzers to each other. When an analyzer has more than one output
type, it is called a generator. Generators are usually at the beginning of each
path, enqueueing smaller analyzables in the engine, such as file systems or files.
They are also prioritized by the engine to ensure that analyzables are generated
first.

17

5 Development Methodology

This section offers a detailed overview of the project’s development life cycle.
Beginning with ”Our Approach to Development” (5.1), we expand upon the
use of the Scrum framework, focusing on its impact on team communication,
task management, and client feedback incorporation. ”Code Quality, Testing,
and Style” (5.2) explores our strategies for maintaining high-quality code, from
our dual-pronged testing approach to the use of linting tools and Python’s type
hints, while ”Reflection on our Testing Strategy” explains the changes we have
made to our initial testing approach, throughout the project. The importance
of clear and accessible documentation is emphasized in ”Documentation” (5.3).
Lastly, ”Requirements” (5.6) lays out our non-functional and functional requirements,
explaining our prioritization process via the MoSCoW model.

5.1 Our Approach to Development

The development methodology we adopted for this project was based on the
Agile approach, specifically employing the Scrum framework. This provided us
with the flexibility and adaptability necessary to respond effectively to changes
and feedback throughout the development process.

Our choice to utilize the Scrum framework was influenced by several factors.
Firstly, we drew on our past experiences with Scrum from previous projects,
which allowed us to take full advantage of the framework’s strengths and avoid
potential pitfalls. Secondly, we valued Scrum’s iterative, incremental approach
to development, which aligned well with our project goals and the nature of our
team.

Given our small team size, frequent face-to-face interactions — a cornerstone
of Scrum — were practical and beneficial. Additionally, the Scrum methodology
facilitated a continuous feedback loop between the client and the development
team. End-of-sprint meetings served as opportunities to showcase our progress
to the client, obtain feedback on implemented features, and discuss areas that
required further development. This process greatly enhanced transparency,
ensured mutual understanding of the project’s status, and helped to align the
client’s expectations with our deliverables.

We operated within a sprint duration of 7 days, which offered a balance
between ample working time and frequent feedback cycles. Each sprint started
and ended with a comprehensive team meeting that included the product owner.
These meetings served as platforms for us to evaluate the accomplishments
and challenges of the past sprint, and also to establish the objectives for the
subsequent one.

To ensure consistent progress, the development team conducted an additional
weekly meeting halfway through each sprint. This mid-sprint check-in provided
an opportunity for us to assess each team member’s progress and make any
necessary adjustments.

Our team members actively communicated and arranged meetings using
a blend of platforms, including Mattermost, WhatsApp, and Discord. This

18

multi-platform approach enabled us to stay connected and ensured efficient
information flow within the team. For interactions between the team and
the TUD Teaching Assistant, we relied on Mattermost and weekly meetings,
whereas client-developer communication was conducted via email and weekly
face-to-face meetings.

We utilized GitLab’s built-in ’Issues’ module to manage and track tasks,
which were derived from each of the requirements outlined in subsection 5.5. The
ability to label tasks in GitLab not only promoted an open-to-client development
process but also enabled us to keep the workflow organized. To ensure fair
workload distribution and effective time management, we further divided each
task into subtasks. This granular approach to task management allowed us to
maintain a clear and structured view of our project’s progress.

5.2 Code Quality, Testing, and Style

In this section, we discuss the implemented measures that uphold the superior
quality and reliability of our software tool. Throughout the project, we focused
on conducting rigorous testing and ensuring stringent standards of code quality
and style.

Our testing strategy was both comprehensive and multilayered, incorporating
unit tests and system tests. Each unit test targeted individual components
of the tool in isolation, created concurrently with each new method. This
methodology allowed us to proactively detect and address bugs and issues,
ensuring the correct functioning of every component before integrating it into the
system. Our system tests, on the other hand, validated the tool’s functionality
as an interconnected system, guaranteeing that methods interacted as expected
when combined [5].

We used virtual machines and actual evidence files to conduct system testing.
In the project’s initial week, we set up various virtual machines with different
settings, such as an encryptedWindows installation and an unencryptedWindows
installation with unallocated space, among others. These were designed to
enable us to thoroughly examine the tool’s necessary functionality. Our client
also significantly contributed to the system testing. They used our tool on their
machines, testing it with real-world data files we would otherwise have not had
access to. We were able to detect and fix many tricky bugs, thanks to our
client’s access to a vast amount of data.

In addition to our exhaustive testing strategy, we employed several tools
to uphold high standards of code quality and style. Our use of linting tools,
specifically pylint and flake8, enabled automated checks on our code’s syntax
and style, facilitating a uniform and highly readable code structure. We also
leveraged radon, a comprehensive tool for collecting code metrics, to gain
insights into our code quality. This aided us in enhancing the maintainability of
our code and reducing its complexity, a crucial step in our software development
process. Python’s support for type hints was another feature we exploited, which
considerably reduced the likelihood of introducing type-related bugs and aided
linters and Integrated Development Environments (IDEs) in style checking.

19

In summary, the measures implemented in testing and maintaining code
quality highlight the robust approach taken in the development of our software
tool. The dual-pronged testing strategy, consisting of both unit and system
tests, has ensured thorough validation of the software at both component and
system levels. The involvement of our client in testing the tool with actual data
files has provided additional reliability. To maintain code quality, automated
linting tools and code metric collectors have been utilized, delivering insights
into the maintainability and complexity of the code. The use of Python’s type
hints feature has further contributed to reducing potential errors and assisting
in style checking.

5.3 Reflection on Our Testing Strategy

This section narrates the progression and adaptations in our testing methodologies
throughout the project. These changes, crucial in the development and refinement
of our software tool, were driven by the unique challenges and necessities presented
by the project.

Our initial plan to conduct unit tests for each feature before its integration
into the system did not prove viable for this particular project. This approach,
while systematic, was overly time-consuming and offered limited value, as we
predominantly encountered bugs during system testing. The tool’s intricate
interaction with the system, coupled with the use of multiprocessing, necessitated
a more robust focus on integration testing. The latter requirement also led to
the occurrence of elusive ’Heisenbugs’, bugs that are particularly challenging to
reproduce due to their reliance on a highly specific set of concurrent or parallel
conditions.

This shift towards system testing and subsequent relegation of complete unit
testing to the project’s final weeks may lead to perceptions that we deviated
from the Scrum development methodology. Typically, Scrum dictates thorough
testing before a feature is considered ’implemented’, and a separate testing phase
aligns more with the Waterfall model. However, elements of our development
pipeline, such as our iterative process and weekly decision-making meetings,
remain consistent with Agile and Scrum principles. We endeavored to adhere
to the Scrum methodology to the best of our abilities, while modifying our
approach to testing in response to the ongoing need for intensive system testing.

Initially, we incorporated mutation testing into our development pipeline.
However, after the first couple of weeks, we encountered a significant issue: the
number of mutants escalated dramatically. As a result of this rapid increase in
mutants, our development pipeline’s efficiency began to suffer. The situation
escalated to a point where the sheer volume of mutants was monopolizing our
limited pipeline execution time, thereby stalling other vital tasks in the pipeline.
After a thorough assessment of the situation, we made the strategic decision
to remove mutation testing from our pipeline. This move was imperative to
ensure that our pipeline resources could be more effectively utilized and our
development process would not be hampered by unnecessary delays.

20

5.4 Documentation

Our codebase was documented, every process specified, enabling stakeholders,
users, and other developers to efficiently comprehend and utilize the tool. To
this extent, we have created written documentation intended for the tool’s users,
which encompassed:

• A complete description of the tool’s functionality, including our chosen
analysis methods, their strengths and their limitations.

• A step-by-step installation and quick-start guide.

• A comprehensive Usage Guide, describing anything that an investigator
would need to know about the tool, including:

– A guide on how to use the Command Line Interface.

– A guide on how to use the Graphical User Interface.

– An explanation of the report structure and tool configuration files.

– Examples of possible analysis commands and configurations.

• An in-depth documentation of classes and methods that encapsulated:

– The structure of each method.

– The interconnections between methods.

– The rationale behind each method’s existence.

– The proper usage of the methods, including examples of use cases,
inputs, and outputs.

Additionally, the tool was supplemented with a README file, with a brief
description of the tool and its functionalities, installation instructions, links
to further documentation, and the list of contributors. For the benefit of
future developers of the tool, we leveraged autogenerating documentation tools,
specifically pydoc and Sphinx. The generated HTML documentation was then
integrated into GitLab Pages, making it easily accessible for reference and
further development.

5.5 Requirements

After conducting thorough research ourselves and then gathering insights from
the stakeholders, both the non-functional and functional requirements have been
extracted from the client meeting on 25/04/2023, as well as from the detailed
information provided in the accompanying PowerPoint presentation.

Requirements are listed according to the MoSCoW12 model for prioritization.
We have chosen this method as it provides a clear and structured framework for
categorizing features based on their necessity for the project’s success, allowing

12In order of importance: Must-, Should-, Could-, Won’t-Haves

21

us to create a realistic development schedule and guarantee the minimum-viable
product’s delivery. This way, adding extra functionality to the final product does
not carry the risk of omitting a crucial feature due to time constraints, instead
putting the latter requirement earlier in the timeline, to be implemented first.
The MoSCoWmethod thus allows the development team to have a greater buffer
to develop the Minimum-Viable Product in case the difficulty of implementing
some features has been underestimated, at the expense of the features in the
lower-importance categories [6].

5.5.1 Non-Functional Requirements

In this section, we delineate the non-functional requirements, that is, the criteria
that judge the operation of a system, rather than specific behaviors. These
requirements encompass the behavior of the tool under certain conditions, its
capacity, and its limitations.

1. The tool will be written for the less technically-experienced examiners to
be able to use in their everyday workflow, enabling them to choose between
live and complete analysis.

2. The system will be usable via a CLI (Command Line Interface) as well as
a GUI (Graphical User Interface).

3. The live version will use minimum resources to prevent system crashes in
the process of detecting encrypted containers, and the tool will generate
a findings report within the timeframe of the on-site police inspection.

4. The complete version will make use of an optimal amount of resources
available to achieve the highest performance possible, and it will prioritize
a greater accuracy using statistical analysis methods.

5. The tool will be written in the Python v3.8 programming language.

6. Once completed,DEA will fit within and be runnable from a commercially
available thumb drive.

7. The test suite of the tool, when completed, will have 70% line coverage.

8. The live version of the tool will only create and write to files present on
the thumb drive it was run from, in order to avoid leaving traces on the
target system.

9. The tool will inspect the target-system without requiring or accessing an
active Internet connection.

10. The tool’s internals will only use open-source tools and frameworks.

22

5.5.2 Functional Requirements

The functional requirements define specific behaviors (or functionalities) that
the system should possess. This section is further divided into 4 categories:
Must-Haves, Should-Haves, Could-Haves, and Won’t-Haves, each reflecting the
relative importance and priority of the features in the tool’s development.

Must-Haves These are the indispensable features for the proposed tool. The
absence of these would drastically impair the tool’s ability to fulfil its core
functionality and purpose.

1. The system must search for and identify encrypted containers in the
medium under-inspection, outputting a findings report that contains
the paths to the files flagged as potentially encrypted, so that these
suspicious files are then provided as input to cracking software.

2. The system’s functionality must be fully documented and made available
to the users, and the tool must be extensible, allowing the recognition
of additional file types and file systems to easily be integrated in the
future.

3. The system must work with E01, DD (raw), and L01 evidence files.

4. The system must recognize and work with the Windows file system.

5. Two versions of the system’s pipeline must be implemented: a live
version and a complete version.

6. The live version of the tool must operate stealthily, confined solely to
the system under-inspection, without producing changes in the files
that were inspected, and interacting with the system in a minimum
viable manner.

7. The live version must provide a greater speed of analysis for on-site
inspection by only scanning the system for the presence of encryption
software, filtering the partitions for containers that are likely encrypted,
and storing the paths of both the files flagged as potentially encrypted
and those considered benign.

8. The complete version must provide better accuracy by running
statistical checks for pseudorandom data – in addition to the scanning
and filtering done by the live version.

9. Four probabilistic tests must be implemented as the statistical checks
for the complete version: Entropy Test, Chi-Square Test, Monte
Carlo Value for Pi Estimation, and Frequency Mean Test13.

10. The system must be able to access remote files on a network using
UNC (Universal Naming Convention) file paths.

13These four statistical methods allow for the detection of pseudorandom data in the raw
byte-contents of the files they are ran on. The following academic paper provides further
information on the mathematical foundation behind these checks: Theoretical and Practical
Aspects of Encrypted Containers Detection – Digital Forensics Approach [7].

23

11. The tool must be able to detect the presence and traces (through
registry keys, logs, and artifact files) of WinRAR, WinZIP, 7Zip,
BitLocker, and VeraCrypt/TrueCrypt installation on a device.

12. The tool must analyze the partition table and report the presence of
any unpartitioned sections that contain data.

13. The tool must be able to detect the presence and traces of VMware
and VirtualBox software.

14. The tool must enable the user to specify the target partition which
the tool will analyze.

Should-Haves This category encompasses the features that, while not strictly
necessary for the tool’s operation, add significant value and enhance the
overall functionality.

1. The system should allow users to select which detection methods
to apply when running the tool, enabling the forensic analyst to
prioritize between either accuracy or speed.

2. The system should allow users to queue up the analysis of several
evidence files, by supplying a list containing the paths of the files
to-be-processed.

3. The tool should be able to produce a findings report at each major
stage of the inspection, i.e disk, filesystem, and artifacts.

4. The tool running through the GUI should continually display each
finding produced during the execution of the analysis (in both live
and complete versions of the system’s pipeline).

5. The system should produce a visual representation of the encrypted
disks and files in the findings report that is generated.

6. The tool should also be able to generate a finding report midway
through execution if the analyst manually terminates it, even if the
analysis is not fully complete.

7. The tool should support the generation of finding reports in three
formats: JSON, HTML, and TXT.

Could-Haves Features falling under the Could-Haves section are desirable but
not necessary. Their implementation would provide additional convenience
or enhancement to the tool, but their absence will not hinder the tool’s
primary functionality.

1. The tool could work on macOS machines.

2. The tool could detect traces of MacOS Parallels.

3. The tool could work on Linux machines.

4. The system could work with AD1 evidence files and IMG/DMG files
found on collected hard drives.

24

5. The system could detect encrypted files and archives created by
WinRAR and WinZIP applications on the device.

6. The system could perform hash analysis of files found within the
evidence disk forensic images, applying NSRL hash lists to filter out
false positives incorrectly flagged by the tool.

7. The tool could work with encrypted virtual hard disks (VHD’s).

Won’t-Haves These are features that are identified but will not be implemented
in this phase of the project. Although they might be considered for future
development, they are not a priority for the current scope of the project.

1. The tool will not attempt to decrypt the files it flags as likely encrypted.

2. The system will not extract any encrypted containers or files, it is
responsible only for storing the paths to said files.

3. The tool will not generate forensic images as part of its functionality.

25

6 Ethical Considerations – From Development
to Deployment

The tool our team has developed has clear ethical concerns that we need to take
into consideration before deploying the product. As the product will remain
in use at the Rotterdam Police for much longer than the Software Project’s
duration, a forward-thinking values assessment will be conducted in this chapter.
The latter will focus mainly on the management of private data, transparency,
and trade-offs made that are relevant to ethical implications. First, Section 6.1
discusses the trade-off between privacy and transparency, outlining the relevant
accountability concerns. Next, Section 6.2 elaborates on the possibility of false
positives and false negatives in the tool’s output. Lastly, Section 6.3 considers
additional risks, such as the DEA becoming more widely used.

6.1 Privacy and Transparency as Conflicting Priorities

DEA is planned to work on suspects’ personal devices or forensic images of
these devices. The team is not supplied with data from the Police database for
testing and uses simulated data for this purpose. Even though this means team
members will not interact with private data during the project, the tool will be
used on such data when deployed.

Furthermore, we should clarify that the tool does not display private data
from a device. DEA does not provide functionality to open the files stored on
the device under inspection, but rather to identify what is on it. Any encrypted
containers found by the tool cannot be viewed or decrypted without the use
of another tool built for this purpose or through using the password given by
the suspect themselves. However, the tool does provide the investigator the
freedom of choosing which file extensions to flag. Therefore, enabling flagging
for non-encrypted, yet still interesting files – such as IMG or DMG files – is
possible.

Flagged files can be viewed by navigating to the address provided by the
tool, which is necessary to assess their importance to the case. Given that the
nature of the crimes relies on the production of visual media of various types,
this functionality has to be preserved. In essence, the tool is not introducing a
new inspection process, but making the existing process quicker. Privacy issues
about the usage of the data on the device under inspection are delegated to the
General Data Protection Regulation (GDPR) and Law Enforcement
Directive (LED) published by the EU, and are beyond the responsibility scope
of the team [8].

A significant concern with a forensic tool is whether the tool functions
only towards its stated goal, or if a second malicious agenda is at play in the
background. Claims could be made that the tool has a feature that forges
evidence and not being able to prove otherwise could lead to the tool being
detracted on wrong grounds. To this end, DEA code source is provided to the
police. If the police deemed necessary, the source code could be provided to

26

a third party in order to assess its behavior. This will allow investigators to
negate potential allegations regarding the tool’s intent in a court of law.

When drafting the project requirements, the client was adamant about the
tool not creating or modifying files on the system-under-inspection. Therefore,
the team designed the product to leave minimal traces behind after operation.
This approach curtails the possibility of the suspect’s defense accusing forensic
investigators of planting or skewing evidence, thereby upholding the clarity of
the investigation process and the tool’s integrity.

To further strengthen the accountability of the tool, we have added the
functionality to include a date and time of analysis in the findings report. In
addition to this, the report also includes the name of the inspector, the name
of the device, where the device was located (encoded in a format stating which
room of the house the device was found), which version of the tool was run, and
which analysis techniques were used. In this way, the tool is transparent about
how, when, and where it was used.

6.2 Consequences of Inaccurate Analysis

Compromises in accuracy had to be made in keeping with the requirements that
were met, and these are acknowledged in this section. For the live version of our
tool, speed was specified as the priority. To this end, timewise-costly analysis
methods are not used in this version. However, this has increased the probability
of false negatives (such as when quicker methods cannot detect traces that are
there), and false positives (such as corrupted/compressed files that are mistaken
to be encrypted) occurring.

False positives could cause forensic investigators to use the tool to chase a
dead-end, and thus waste valuable time. Beyond that, false positives can mean a
suspect’s device is confiscated for no good reason, potentially causing difficulties
until the police returns the device. On the other hand, false negatives could
cause the premature dismissal of potentially important pieces of evidence for
the investigator’s case. This could result in the suspect subsequently removing
the evidence, and thus greatly reducing the possibility of catching the suspect
in a second investigation. As we understand these risks are created by this
necessary trade-off, choosing to run the live version of the tool raises a warning
that explicitly states this potential. Thus, by making the end-user aware of that,
we improve the transparency and explainability of the tool’s internal operation.

6.3 Additional Risks and Their Implications

As the project objective serves to benefit the justice system where we all live,
we feel it is necessary to touch on the intended ethical results and the group’s
motivation in developing the tool. Firstly, the tool is designed to speed up and
automate the already-existing process of searching for evidence. This implies
that cases can be supported or refuted with the truth much sooner than when
no such digital forensic tools are available [9]. Furthermore, our supervisor at
the Police mentioned that if the tool is found useful and reliable within the

27

Rotterdam force, it could be distributed to and used by units in other regions
of the Netherlands in the future.

The prospect of our work being distributed and used to fight crime at a larger
scale increased motivation within the group, urging us to pay closer attention
to writing explainable and well-documented code, as well as making the final
product maximally extensible and adaptable to different forensic-image formats,
filesystems, and investigation circumstances (both on-site at a suspect’s place
of residence and at a police station).

With the potential of the tool’s usage being widened comes the possibility
that is used by other police divisions than TBKK. For example, what happens
if the tool is used by other divisions to investigate devices of potential terrorists,
tax evaders, or drug traffickers? Although these crimes sound more severe and
thus give the impression that the ethical implications of the tool would be
widened, the way suspects and their devices are treated remains the same in
essence. Suspects still have their privacy rights and can still be convicted or
evicted with the support of evidence discovered using DEA. Therefore, the
arguments presented in this section still hold.

One possibility that deserves explicit recognition is the tool escaping (either
knowingly or not) into the hands of parties outside the police force. If these
parties are still organizations of a government, the aforementioned legislation
GDPR applies and there is no cause for concern. But if they are not, then
we should consider how the police handles any of the powerful tools it has
at its disposal. Like DEA, leakage of any software tool to third parties is
undesirable and dangerous. In the wrong hands, these tools can be modified
to serve malicious intent. Therefore, their owners should be taking appropriate
precautions to prevent such situations.

28

7 Recommendations

As the team had limited time during the development of DEA, this section
introduces four points of recommendation regarding the further development
and the use of the tool. These recommendations focus on giving advice about
how to increase the tool’s effectiveness through extensions, and how to best
utilize the tool’s capabilities.

First, the addition of Dutch language support to the tool is the first extension
that is recommended considering that it will primarily be used in the Netherlands.
This will enable users to interact with the tool in the comfort of their native
language. However, the translation process should be conducted with caution.
The tool makes use of frequent and informative warnings which should be
maintained and extended in the Dutch version. Preserving transparency and
ease-of-use of the tool in both languages will increase usability, and thus allow
it to be in use for a longer period of time.

Second, extending the tool to support analysis of Linux and MacOS devices
is recommended to make the tool universally usable. Even though Windows is
the predominant operating system found on devices, Linux and MacOS devices
are intermittently encountered. Extending the tool to handle these operating
systems’ partition tables and file systems is convenient for future developers
thanks to the extensible design in place.

Third, if new analysis techniques are to be added to the tool, these should
focus on reducing the number of false positives. The current logic implemented
by the tool dictates that flagging a potentially suspicious file is preferable to
allowing it to pass unnoticed, but more robust techniques can be added to
reduce these to a minimum.

One such technique is Hash analysis. This analysis method involves hashing
programs found on the device under inspection, and comparing these to the
hashes of known programs in the National Software Reference Library (NSRL)
[10]. In addition, newly found suspicious files can be hashed and compared to
hashes of previously discovered files in the Police database.

Fourth, for the end users of the tool, it is recommended to prepare DEA
configuration files for use in specific situations. To achieve optimal utilization,
analysis techniques can be dynamically enabled and disabled depending on the
context. The most frequently encountered situations can be made easier to
handle by keeping a configuration file specifically suited for that circumstance.
Techniques that are quicker and more effective at finding large artifacts can be
enabled for a field configuration, while time-consuming yet accurate techniques
can be enabled for a configuration set to run overnight.

29

8 Conclusions

DEA is our group’s solution to the challenges that forensic investigators face,
namely the large variety of encryption tools available and the very large sizes of
the drives and disk images under investigation. This report set out to provide
justification for the design choices our group made while developing the tool.
To provide this justification, we considered 3 possible architectures: Layered,
Monolithic, and Pipe-and-Filter. The advantages and drawbacks of each were
discussed, and after careful consideration, support was given for the eventual
choice of proceeding with the Pipe-and-Filter architecture. Supporting design
patterns were also described, elaborating on DEA’s inner functionality.

An approach that narrows down the search space after each stage was deemed
appropriate, given the large containers that are analyzed with the tool. Thus the
Pipe-and-Filter architecture was chosen for the implementation of the DEA.
With this architecture, each analysis technique acts as a filter reducing the
search space. An artifact queue together with the predecessors attribute of each
analysis technique functions as a pipe between the methods.

Furthermore, the Pipe-and-Filter architecture increases the modularity and
reduces the complexity of interactions between analysis methods in comparison
to a layered architecture. New analysis techniques are easy to add to the pipeline
by defining the predecessors of each technique. Furthermore, passing an artifact
to another method is as simple as enqueueing it to the artifact queue as a pair
with the method of analysis.

The project process has shown that further development of DEA is crucial
to increase the efficiency of forensic analysis. To continue development and
ensure efficient use of the tool, this report recommends four items.

First, it is recommended to add Dutch language support while maintaining
and extending the tool’s warnings. The addition of Dutch support and
the upkeep of transparency will increase trust in the tool for new users.
This will subsequently allow it to help more investigators for a longer time.

Second, a team of developers could add Linux and MacOS support to DEA
in order to expand the use cases of the tool. Even though Windows is the
predominant operating system encountered in suspect devices, support for
Linux and MacOS would make the tool universally usable.

Third, the new analysis techniques added can focus on reducing the amount
of false positives through more vigorous filtration and analysis. It is
recommended to hash found programs for comparison with the NSRL
database, and to hash found files to compare against files in the Police
database.

Fourth, it is recommended to prepare configuration files and to dynamically
enable/disable certain analysis techniques depending on the context. This
will enable the efficient use of the tool in situations demanding swiftness,
or conversely in situations that require thorough analysis.

30

References

[1] B. Lyons, “Disk Image Content Model and Metadata Analysis,” Harvard
University Libraries, Brooklyn, New York, Tech. Rep., 2016.

[2] Magnet Forensics, “Encrypted Disk Detector,” 2020. [Online]. Available:
https://www.magnetforensics.com/resources/encrypted-disk-detector/

[3] A. Davies and A. Tomlinson, “Detecting the Use of TrueCrypt,” Royal
Holloway, London, United Kingdom, Tech. Rep., 2010.

[4] A. L. Rukhin, “Random Number Generation Tests,” in A Statistical
Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications. U.S. Dept. of Commerce, National Institute
of Standards and Technology, 2000, pp. 23–62.

[5] M. Aniche, A. v. Deursen, and S. Freeman, Effective Software Testing: A
Developer’s Guide, 1st ed. Manning Publications, 2022.

[6] E. Miranda, “Moscow Rules: A Quantitative Exposé,” in Agile Processes
in Software Engineering and Extreme Programming, V. Stray, K.-J. Stol,
M. Paasivaara, and P. Kruchten, Eds. Cham: Springer International
Publishing, 2022, pp. 19–34.

[7] I. Jozwiak, M. Kedziora, and A. Melinska, “Theoretical and
Practical Aspects of Encrypted Containers Detection – Digital Forensics
Approach,” in Dependable Computer Systems, W. Zamojski, J. Kacprzyk,
J. Mazurkiewicz, J. Sugier, and T. Walkowiak, Eds. Springer Berlin
Heidelberg, 2011, pp. 75–85.

[8] B. Custers and L. Stevens, “The Use of Data as Evidence in Dutch Criminal
Courts,” European Journal of Crime, Criminal Law and Criminal Justice,
pp. 25–46, 2021.

[9] M. B. Seyyar and Z. Geradts, “Privacy Impact Assessment in Large-Scale
Digital Forensic Investigations,” Forensic Science International: Digital
Investigation, 2020.

[10] N. Rowe, “Testing the National Software Library,” The Proceedings of the
Twelfth Annual DFRWS Conference: Digital Investigation, 2012.

31

https://www.magnetforensics.com/resources/encrypted-disk-detector/

A Work Distribution among Team Members

32

B Project Timeline

Figure 7 presents the Gantt chart, which provides a comprehensive overview of
the anticipated timeline for the DEA tool’s development. The priority and

significance of each task were determined based on its dependency relationships
with other tasks. This chart offers a precise depiction of the project’s actual
timeline, with some notable deviation: the shift of Signature Analysis to the

project’s second week and the focus on unit testing in the last weeks.

Figure 7: Gantt Chart of the Project Timeline

33

	Preface
	Summary
	List of Abbreviations
	Introduction
	Establishing the Task's Scope
	The Need for Encryption Identification
	Stakeholders Involved
	Use Cases
	Survey of Existing Tools
	Consulted Experts

	Project Approach
	Settling on the Pipe-and-Filter Architecture
	Supporting Design Patterns
	Outlining the Analysis Workflow

	Implementation Details
	Design of the User Interface
	Engine
	Analyzer Graph

	Development Methodology
	Our Approach to Development
	Code Quality, Testing, and Style
	Reflection on Our Testing Strategy
	Documentation
	Requirements

	Ethical Considerations – From Development to Deployment
	Privacy and Transparency as Conflicting Priorities
	Consequences of Inaccurate Analysis
	Additional Risks and Their Implications

	Recommendations
	Conclusions
	Work Distribution among Team Members
	Project Timeline

